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A fiber lightguide is a fine continuous or tubular transparent filament. Fiber lightguides are 
formed from the liquid mass exuded through a dye or drawn from a suitable blank. Both of 
these processes can be considered using the equations of the hydrodynamics of an incom- 
pressible Newtonian liquid. (Polymers, which are not Newtonian liquids, are not considered 
here.) The drawing of a continuous glass fiber from a dye is considered in [i]. The drawing 
of a microcapillary from a dye is considered in [2], where a qualitative consideration is given 
which is insufficient for an understanding of the effect of different parameters of the process 
on the dimensions of the drawn microcapillary. In this paper we consider the formation of a 
microcapillary from a tubular blank using the approximation of an incompressible Newtonian 
liquid with a variable viscosity determined by the given temperature distribution. The effect 
of surface tension and of the excess pressure produced in the channel to counteract the sur- 
face tension are taken into account. If is assumed that the drawing process is steady, the 
blank has thin walls and is axisymmetrical, and the transition to a microcapillary occurs 
smoothly. With these assumptions the problem of obtaining the shape of the transition and the 
dimensions of the microcapillary obtained is reduced to a system of ordinary differential 
equations. The dependence of the dimensions of the microcapillary on the dimensions of the 
blank and the parameters of the process is established, thereby enabling the process to be 

optimized. 

The process by which a microcapillary is formed is described by the Navier-Stokes equations and by 
the equation of continuity. The viscosity of the blank and the finished microcapillary is assumed to be infi- 
nitely large, it is a known function of the temperature, the temperature distribution is given, the liquid is 

isotropic, and its motion is assumed to be axisymmetric, which makes the problem two-dimensional. 

We are given the thickness of the wall h 0 and the mean radius u of the blank, its feed rate u0, and the 
microcapillary drawing speed u~ ( Fig. i). In the solution we take into account the surface tension cr and the 

pressure drop AP = Pi -P2 between the channel and the external medium, both these quantities being as- 

sumed constant along the z axis. 

The blank and the finished microcapillary are assumed to be relatively thin-walled, i.e., over the whole 
cross section the thickness of the wall is assumed to be small compared with the radius. Assuming that heat 
transfer to the blank inside the heater and subsequent cooling of the fiber are due to radiation, and the ab- 
sorption coefficient of the material is small, the temperature of the liquid will be constant at all points of the 
transverse cross section of the jet. This means that the temperature distribution and, consequently, the vis- 
cosity depend only on the longitudinal coordinate and are described by the given function U(z). It is clear 
from the formulation of the problem that ~/(z) is a smooth function which approaches infinity as z ~ ~:oo (see 

Fig. 1). 

We wish to find the shape of the jet (the transition from the blank to the microcapillary), i.e., the thick- 
ness of the wall and the radius of the jet as a function of the longitudinal coordinate, including the thickness of 

the wall boo and the mean radius Too of the drawn microcapillary. 

As was done in [i], we change from the Navier-Stokes equations 
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Fig. 1 

OII~/Oxk = 0, ~, k = i, 2, 3, 

II~ = pv~vh -- o~k, ~ = -- p6ik § ~(Ovdax~ + Ovh/OxJ, (I} 

where Ilik is the tensor of the momentum flux density, ffik is the stress tensor, v i and x i are the eompo- 
nentsofthevelocity and the coordinate, p is the pressure, p is the density, and ~ is the viscosity, to the 

momentum equation which is obtained by integrating Eq. (i) over the volume of the liquid contained between 

the sections z = z i and z = z 2. We will change from a volume integral to a surface integral: 

n~kd/k = O, (2) 

w h e r e  df  k i s  an e l e m e n t  of  the  s u r f a e e  and  the  i n t e g r a t i o n  i s  c a r r i e d  out  o v e r  the  d o s e d  s u r f a c e  c o n s i s t i n g  
of  t he  two t r a n s v e r s e  c r o s s  s e c t i o n s  a t  z = z 1 and  z = z 2 and  the  two s i d e  s u r f a c e s :  the  i n t e r n a l  s u r f a c e  
[ r  = r i ( z )  ] and  the  e x t e r n a l  s u r f a c e  [ r  = r 2 ( z ) ] .  The  b o u n d a r y  c o n d i t i o n s  on the  s i d e  s u r f a c e s  have  the  f o r m  

az~ sin Ol, ~ -q- ~ z  cos 01, ~ ----- - -  [Pl, ~ q: (g cos01, ~Ir~.~)] sin Ox, ~; (3) 

arr cos 01. ~ -k ~ r z  sin Ol. ~ = - -  [Px, ~ -W- ((~ cos01, z/rl,:)] cos 9 L z, (4) 

w h e r e  0i,2 a r e  t he  a n g l e s  o f  i n c l i n a t i o n  of  the  i n t e r n a l  and  e x t e r n a l  b o u n d a r i e s  in the  r - z  p l a n e  

tg 0i,2 = - -d ry ,2  (z)/dz; dri.2 (z)ldz = vr/v~]r=~i.z(..). (5) 

Subs t i t u t i ng  the  t e n s o r  I I ik  in to  t he  z - t h  c o m p o n e n t  of  Eq. (2), n e g l e c t i n g  the  n o n l i n e a r  t e r m s  p r o p o r t i o n a l  to 
t he  d e n s i t y  in v i ew of  t he  s m a l l n e s s  o f  t he  R e y n o l d s  n u m b e r ,  s u b s t i t u t i n g  Eq. (3) in to  the  i n t e g r a l  o v e r  the  i n -  
t e r n a l  and  e x t e r n a l  s i d e  s u r f a c e s ,  and  a s s u m i n g  the  a n g l e s  of  i n c l i n a t i o n  02, 2 to  b e  s m a l l  so tha t  01, 2 ~ 1 ,  we  
o b t a i n  

S " ~ Or:(z)__r:(z)  p : - -  a Or:(z)] az~rdr - -  Ozzrdr = - r~ ( z) P~ + r.~-~) ~ r-~) --~z 2 dz" (6) 
r , ( z 2 )  r z ( z t )  z~ 

Since  the  s u r f a c e  t e n s i o n  ff and  the  p r e s s u r e  of  t he  a i r  Pl and  P2 a r e  a s s u m e d  cons t an t ,  t he  i n t e g r a l  on the  
r i g h t  s i d e  o f  Eq. (6) can  b e  t a k e n  in p a r t s :  

r4z) 

[ p - - 2 T l ( Z ) ~ ] r d r ~  + [ p = r 2 ( z ) - - p x r ~ ( z ) ]  q - ( ~ [ r , ( z , + r ~ ( z ) ] q - c .  (7) 
r,(z) 

W e  w i l l  a s s u m e  tha t  f o r  a l l  z 

(r~ - -  r:)Op/Or << p, (r~ - -  rl) O~v~/OrOz << OvjOz (8) 

[ a f t e r  o b t a i n i n g  the  so lu t i on  w e  w i l l  f ind  b y  d i r e c t  s u b s t i t u t i o n  into  the  N a v i e r - S t o k e s  e q u a t i o n s  u n d e r  wha t  
c o n d i t i o n s  r e l a t i o n s  (8) a r e  s a t i s f i e d ] .  T h e  p r e s s u r e  p and  the  l ong i t ud ina l  c o m p o n e n t  of  t he  v e l o c i t y  v z can 
t hen  b e  a s s u m e d  c o n s t a n t  o v e r  e a c h  c r o s s  s e c t i o n  z = c o n s t  and  to  b e  dependen t  on ly  on the  l ong i tud ina l  c o -  
o r d i n a t e  z. T a k i n g  t h e  e x p r e s s i o n  in  s q u a r e  b r a c k e t s  in  Eq. (7) o u t s i d e  the  i n t e g r a l  w e  ob t a in  

�9 2 ~ 2 [r~ (z) - -  r~(z)] [p - -  2~1 (z) (dv~/dz)] [p2r~ ( z  - -  p:r~ (z)] -k 2~ [r: (z) + r~ (z)] -k 2c. 

I n t e g r a t i n g  w i t h  r e s p e c t  to t he  v a r i a b l e  r t h e  e q u a t i o n  of  con t inu i ty  

div v ----- 0 

and  t a k i n g  in to  a c c o u n t  t h e  a b o v e  a s s u m p t i o n s ,  w e  o b t a i n  
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v, = - - (r /2)dvf ldz  + A (z)/r, (9) 

is  an unknown funct ion.  We use  the  b o u n d a r y  cond i t i ons i4 )  to f ind p ( z )  and A ( z ) ,  we  subs t i tu te  w h e r e  A (z)  
the  e x p r e s s i o n  f o r  the  r ad i a l  ve loc i ty  (9) into the  equa t ions  of  the  b o u n d a r i e s  (5), and we in t eg ra t e  them.  
Then,  chang ing  f r o m  the  i n n e r  and o u t e r  rad i i  r 1 (z)  and r 2 (z)  to the  wa i l  t h i c k n e s s  h ( z )  and the  m e a n  
r ad iu s  u  

h(z) = r~(z) - -  ri(z); r(z) = (  l /2)[r i(z  ) + r,.(z)] 

and put t ing  u = v z, AP = Pl - P2,  we  obta in  a se t  of  equa t ions  with the  b o u n d a r y  condi t ions  

~ldu/dz - -  c~u = - -  (l/3h; (10) 

2udh/dz  + hdu/dz = e/q --  (~Ap/2~)[1 - -  (h2/'~r 2) ] ;  (11) 

rhu = 8, (12) 

Ulz=_= ---- Uo; rlz=_:~ = r0; hlz=_:.  = h0; u]~=+| = us ,  (13) 

w h e r e  a and  B a r e  unknown cons tan t s ,  u 0 and  uoo a r e  the  feed r a t e  and the  d rawing  ve loc i ty ,  and h 0 and u 
a r e  the  t h i c k n e s s  o f  the  wa l l  and  the  m e a n  r ad iu s  of  the  blank.  

F r o m  a c o m p a r i s o n  of  Eq. (12) wi th  z = - ~  and  Eqs.  (13) we  obtain  tha t  fl = ~0h0u0 . The  a s sumpt ion  
tha t  the  wa l l s  o f  the  f i b e r  a r e  th in  enab les  us to neg lec t  the  quant i ty  (h /Y)  ~- in Eq. (11) c o m p a r e d  wi th  unity,  
and a f t e r  subs t i tu t ing  the  va lue  o f  h f r o m  Eq. (12) into Eqs.  (10) and (11) we  obtain two d i f fe ren t ia l  equat ions  
fo r  u and u and an exp l ic i t  e x p r e s s i o n  f o r  h. 

Changing  to the  d i m e n s i o n l e s s  v a r i a b l e s  

Z = z/ l ,  H = h/h o, R --r/--ro, U = U/Uo, ~ = ~1o/~, (14) 

w h e r e  77o is  the  m i n i m u m  v i s c o s i t y ,  and the  e f fec t ive  length  of  the  hea t ing  zone 1 is  g iven by  the  equat ion 

l # lo=  i dz/~l(Z); (15) 
~ o c  

the  equa t ions  and the  b o u n d a r y  condi t ions  wi l l  now conta in  the  d i m e n s i o n l e s s  p a r a m e t e r s  

U~ = _ u J u o ,  w = In U s, V = al/~ow, (16) 

P = roApl/2~louohow, Q = el/~ouohow. 

In the new v a r i a b l e s  the  equa t ions  and b o u n d a r y  condi t ions  wil l  have  the  f o r m  

dU/dz  - -  ? , twU = - -  (Q/3)~twRU; (17) 

2UdB/dz  + B d U / d z  = - -~twB*U(Q - -  PR) ;  (18) 
U b = _ ~ =  t; Rfz=_|  I ,  (19) 

U!~=+~ = U~; H = l / R U .  (20) 

The  cons t an t  7 i s  found f r o m  the  condi t ion  f o r  the  b o u n d a r y  condi t ions  (19) and (20) to  be  sa t i s f ied ,  the 
n u m b e r  of  which  e x c e e d s  by  one the  o r d e r  o f  the  s y s t e m  (17) and (18). 

When  P = Q = 0, wh ich  c o r r e s p o n d s  to z e r o  s u r f a c e  t ens ion  and z e r o  p r e s s u r e  drop (Ap = a = 0), Eqs.  
(17) and (18) when  T = 1 have a solut ion which  s a t i s f i e s  all the b o u n d a r y  condi t ions  

U(0)(Z) = exp (ws(Z)); RIO(Z) = [U(~ (21) 
U(o)(Z) = [U(o)(Z)]_~/2, (22) 

where 
z 

s (Z)  = j i.t(~) d~, (23) 
- - c o  

To so lve  Eqs .  (17) and (18) when p z  + Q2 ~ 0 we  change  f r o m  the  v a r i a b l e  Z to the  v a r i a b l e  s ( Z ) .  In 
th is  c a s e ,  the  i n t e rva l  ( -~o,  ~o) of  v a r i a t i o n  of  Z c o r r e s p o n d s  to the  i n t e r v a l  (0.1) of  v a r i a t i o n  of s, s ince  as  

QO 

fo l lows f r o m  Eqs.  (14) and (15), s( + oo) = f #(~)dL= 1. Subst i tut ion of  Eq. (23) into Eqs .  (17) and (18) and a r i t hme t i c  
- - O O  

t r a n s f o r m a t i o n  l e a d  to a s y s t e m  of  equa t ions  wi th  s e p a r a b l e  v a r i a b l e s :  

(24) 

(25) 
dR/ds  = - - ( w R / 2 )  [? -4- (2/3)QR - -  P R  21; 

( I / U ) d U / d R  = (2/3)(QB - -  27)/[~R + (2/3)(QR ~- - -  PB3) l  
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with  the  b o u n d a r y  condi t ions  

Uis=0 = 1; /~l~=0 = t; (26) 
U],=:I = exp(w). (27) 

In t eg ra t ing  Eqs.  (24) and  (25) wi th  the b o u n d a r y  condi t ion (26) we  obtain f o r  R and U as  impl ic i t  func-  
t ions  of  the independent  v a r i a b l e  s e x p r e s s i o n s  conta in ing  the unknown cons tan t  T: 

[Yl/(Yl - -  y~)]ln[(l  - -  R y l ) / R ( i  - -  y~)] --  [yJ(y,. - -  y~)]ln[(t - -  Ry2) /R( t  - -  Y2)] = 7ws/2; (28) 

lnU = [(3y~ @ Y2)/(Y~ - -  y.,)]ln[(t - -  Ry~). '(R(l - -  yl)] @ [(3y~ =- y~)/(g~ - -  yl)i!n[(t - -  t~V~.).'R(1 - -  V~)i, (29) 

w h e r e  Yl~ a r e  quant i t i es  wh ich  a r e  i n v e r s e  to the roo t s  of the quadra t i c  t r i n o m i a l  on the r igh t  s ide of  Eq. (24) 

Y~, , = ( - q + _ _ V  Q~ + 9PT)/av. (30) 

To obta in  the  unknown cons tan t  7 we  use  the  b o u n d a r y  condit ion (27). Subst i tut ing Eq. (27) into Eqs.  (28) and 
(29) and e l imina t ing  f r o m  the  equat ions  ob ta ined  the  unknown quant i ty  R(1), we  obtain tha t  7 = Y (P,  Q, w) is 
the r o o t  of  the  equa t ion  

(l - -  y~.)exp[w(7 - -  t)(3yl + y~)/2(yx @ y~)] --  (1 - -  y~) • 
X exp [w( 7 - -  i)(3y, --' yl)/2(y~ @ y~)] = (~1 - -  Y2)exp (--  w/2) (31) 

[ a c c o r d i n g  to Eq. (30) 7 o c c u r s  in Yl,2]. 

Af t e r  obta in ing  the  cons tan t  T f r o m  Eq. (31), the  quant i t ies  R and U a r e  given as  impl ic i t  funct ions  of 
s by  Eqs.  (28) and (29). 

The  d imens iona l  r ad ius ,  longi tudinal  ve loc i ty ,  and wal l  t h i cknes s  can be  e x p r e s s e d ,  a c c o r d i n g  to Eqs.  
(14) and (19), in t e r m s  of the funct ions  R ( s )  and U ( s ) :  

7"(z) = roR[s(z/ l)  ]; u(z) = uoU[s(z/I )]; (32) 

,~(z) = h0/{R is(z/t) 1 U[s(z/t) l}. 

The f inal  v a l u e s  of  the wal l  t h i ckness  h~o = h(+~o) and the r ad ius  rr = ~ ( + ~ )  which  d e s c r i b e  the g e -  
o m e t r y  of  the drawn m i c r o c a p i l l a r y  can  be  e x p r e s s e d ,  us ing  Eq. (27), in t e r m s  of  the function R ( s )  fo r  s = 1: 

h| = ho]/-~o/Uc~)K(P, Q, w); r =ro]Z(~o/U ) [ t / K ( P  , Q, w)], (33) 

w h e r e  we  have i n t roduced  the notat ion 

K ( P ,  Q, w) = exp ( -  w/2)/R(t). (34) 

Subst i tut ing the  b o u n d a r y  condit ion (27) into Eqs. (28) and  (29), and using Eq. (31), we  obtain 

K ( P ,  Q, w) = (t - g2)exp[w(7 - l)(3y~ -- yz)/2(y~ + g~)] @ y.2exp ( -  w/2). (35) 

Hence,  the  p r o b l e m  of  d e t e r m i n i n g  the  g e o m e t r y  of  the m i c r o c a p i l l a r y  (the final va lues  of  the wai l  t h i ck -  
n e s s  hoo and the  r ad iu s  u162 r e d u c e s  to the n u m e r i c a l  solut ion fo r  each  se t  o f  va lues  of  the p a r a m e t e r s  P ,  Q, 
and w of  the  t r a n s c e n d e n t a l  equat ions  (31) and (35), a f t e r  which  the quant i t ies  h~ and ~'~ a r e  found f r o m  Eq. 
(33). 

The functions R(s) and U(s) which, from Eq. (32) determine the profile of the jet, i.e., the quantities 
h(z) and Y(z), can be found either by numerical solution of Eq. (28), or which is more convenient, by direct 
numerical integration of the system of equations (24) and (25) with the boundary conditions (26) and the known 
constant T [obtained from Eq. (31)]. 

For P << I, Q << 1 for the function K(P, Q, w) the following approximate expression [obtained by the 
method of successive approximations from Eqs. (24) and (25) taking Eqs. (26), (27), and (34) into account] 
holds :  

K ( P ,  Q, w) = i + Q - (p/2) + Q2[(1/6) - (2/3w)] + P Q [ ( i / i 8 )  + (t/3w)l - (P~/8) + 0(Q: @ p2) (36) 

[we used  e x p r e s s i o n s  (21) and (22) as  the ze ro th  approx ima t ion  fo r  R ( s )  and U(s ) ] .  

We  wil l  d e t e r m i n e  u n d e r  what  condi t ions  a s s u m p t i o n s  (8) hold in o r d e r  that  we  m a y  a s s u m e  the p r e s s u r e  
and the longi tudinal  ve loc i ty  a r e  cons tan t  o v e r  the  t r a n s v e r s e  c r o s s  sec t ion.  We wi l l  confine o u r s e l v e s  to the 
c a s e  of  sma l l  va lues  o f  P and Q so that  we  can use  the  z e r o t h  app rox ima t ion  (21) as  the solut ion fo r  the  
longi tudinal  ve loc i ty .  Subst i tu t ing Eq. (21) and the  e x p r e s s i o n s  ob ta ined  f o r  p us ing  Eqs. (4) and (9) into the  
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Navier-Stokes equation (1) and assuming that 8/0 z ~ 1/1, since the unique characterist ic length along the z 
axis is l ,  we find that assumpt ions  (8) hold if u << 1. 

In view of the fact that  the f iber  has thin walls  this l imitation is less  s t r ic t  than the previous ly  made 
assumption that the slope of the boundary is small.  

It is important  that the final values of the wall thickness h~ and the radius u should be independent of 
the v i s c o s i t y - t e m p e r a t u r e  dependence and of the details of the t empera tu re  profi le  itself,  and should depend 
only on the integral  cha rac t e r i s t i c  l /~  o of the function ~? (z) ,  since according to Eq. (33) the quantities h~ 
and u  depend on the v i scos i ty  only through the p a r a m e t e r s  P and Q which, of all the charac te r i s t i c s  of the 
function ~ (z) ,  contain only the quantity 1/~]o [defined by Eq. (15)], which is the charac te r i s t i c  of the heating 
zone (an inc rease  in the effective length of the heating zone l or  an inc rease  in the t empera tu re  leading to a 
reduction in the min imum v i scos i ty  770 cor responds  to an increase  in the charac te r i s t i c  l/To of the heating 
zone). 

Hence, for different t empera tu re  distr ibutions,  drawing of the mic rocap i l l a ry  occurs  for different jet 
prof i les  along the whole length of the blank until the mic rocap i l l a ry  solidifies, but, if the integral cha rac t e r -  
ist ic of the v i scos i ty  distribution ~? (z) is the same,  the dimensions of the drawn microcapi l la ry ,  i.e., the 
values of h~ and u  will also be the same. 

We will i l lus t ra te  the dependence of the jet profi le  on the p a r a m e t e r s  P and Q for a fixed t empera tu re  
distribution 

T(z) = Tg + (T~ --  Tg)/(t + c~z~), 

where  T m is the maximum tempera tu re ,  Tg is the vi tr if icat ion tempera ture ,  and c 1 is a constant chosen to 
ensure  the same value of 1~To in both cases  with the following v i s c o s i t y - t e m p e r a t u r e  dependence: 

~l(T) = a exp[b/(T --  Tg)], T ~ Tg 

(a and b a re  constants  which depend on the p roper t i e s  of the mater ia l ) .  

The deformation of the jet  profi le  with respec t  to the profi le  unperturbed by surface  forces  depends 
ve ry  much on the values of the p a r a m e t e r s  P and Q and the rat io between them [Fig. 2, where curve 1 is for 
the unperturbed prof i le  with P = Q = 0; curve 2 is for  the per tu rbed  profi le  with I ) = 0, Q = 1 and P = 0, 
Q = 2 (Fig. 2a and b, respectively)] .  The quantity Q is g rea t e r  the g r ea t e r  the surface  tension u and the t ime 
the specimen res ides  in the heating zone l/uo, and the lower the value of the minimum viscosi ty  ~?0 and the 
initial wall thickness  h0, which de termines  the thickness of the layer  of the viscous liquid which res i s t s  the 
action of the surface tension forces .  

The dimensions of the mic rocap i l l a ry ,  i.e., the quantities h~ and r ~ ,  a re  determined according to Eq. 
(33) by the  dimensions of the blank h 0 and Y0, the rat io of the drawing speed uoo to the feed ra te  u0, and by 
the value of the function K(P,  Q, w). When there  a re  no surface forces  (AP = u = 0 and, consequently, p = 
Q = 0) it follows f rom Eq. (36) that K = 1 and the final values of the wall thickness and the radius are  p r o p e r -  
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tional to the initial values of these quantities with a coefficient ~/u0/u~, which a r i ses  f rom the law of con- 
servat ion of mass  and which descr ibes  the reduction in the wall thickness and the radius while p rese rv ing  the 
geometr ica l  s imi lar i ty  of the c ros s  sect ions of the mic rocap i l l a ry  and the blank. The function K(P,  Q, w) 
descr ibes  the effect of the surface tension and p r e s s u r e  drop, which lead to a deviation from s imi lar i ty  de- 
pending on the ratio between them, or  K > 1 in which case hoo/u > h0/u  or  K < 1 in which case h~/T~o < 

ho/u  

Figure 3 shows a family of curves which give K as a function of Q for w = In(105) and different fixed 

values of the ratio P/Q. The curves corresponding to w = In (104 ) and w = in(106) practically coincide with 

the curves for w = in(105), so that over this range of values of w we can neglect the explicit dependence of 

the function K on w (as previously, K depends implicitly on w, since w occurs in P and Q). The weal; 

explicit dependence of K on w also follows from Eq. (36), since w only occurs in the terms which are 
quadratic in P and Q. 

The family of curves in Fig. 3 together with Eq. (33) answers the question of how h~ and T~ depend on 
the dimensionless parameters P and Q. 

To explain the dependence of the dimensions of the microcapillary on each of the dimensional parame- 

ters grouped in the two dimensionless quantities P and Q, it is necessary to analyze the results further. 

Figure 3 shows the dependence of h~ and ~ on the characteristic I/~o of the heating zone (in fact on its 

temperature) for fixed values of the pressure drop Ap, since, as is seen from Eq. (16), each of the quantities 

I/~ 0 and Ap occurs only in one of the parameters Q and P/Q , respectively.The additional scales in Fig. 3 

in which the maximum temperature of the heating zone T (~ and the dimensions of the microcapillary h~ 

and Too (~) a re  plotted, a re  const ructed  for  the following values of the remaining p a r a m e t e r s :  h 0 = 0.1 cm, 
T 0 = 1 cm, u 0 = 0.01 c m / s e c ,  uoo = 10 m / s e c ,  ~ = 250 d y n / c m ,  and l = 5 cm. 

To obtain the direct  dependence of the dimensions of the mic rocap i l l a ry  on the other  dimensional 
p a r a m e t e r s  of the p r o c e s s  it is neces sa ry  when construct ing the graphs to use as the argument  and the 
p a r a m e t e r  of the family not Q and P /Q ,  but o ther  quantities (for example, the quantities P and Q, r e spec -  
tively, when investigating the dependence on AP for  fixed values of ~ ). Such graphs can be obtained from 
Fig. 3. 

Within the f ramework  of this problem we can only consider  variat ions of the p a r a m e t e r s  that are  slow 
compared  with the charac te r i s t i c  t ime t o of the system. The upper es t imate  for  t o is the rat io of the effec- 
tive length of the heating zone l to the minimum longitudinal speed - the feed rate u0: t o = l / u  o (under p r a c -  
t ical conditions t ~ 102-103 sec). The problem of the sensitivity of the dimensions of the mic rocap i l l a ry  to 
such slow var ia t ions  of the p a r a m e t e r s  is cons idered  using the above graph. It is seen f rom Fig. 3 that values 
of the p a r a m e t e r s  P and Q exist  when (~K/~Q)p/Q = 0. When the pa r t i a l  derivative is equal to zero  this 
means  that at this point the dimensions of the mie rocap i l l a ry  a re  only slightly sensitive to a slow change in 
the cha rac te r i s t i c  l/~]o of the heating zone for constant AP. Note that, f i rs t ,  the ext remal  points cor respond  
to K > 1, i.e., to g r ea t e r  o r  less  col lapse of the microcapi l la ry ,  and, secondly, for large Q the curves  in 
Fig. 3 a re  well separa ted  f rom one another  which cor responds  to an ext remely  high sensit ivity to changes in 
Ap. This obviously neutra l izes  any mer i t  of these points such as the low sensit ivity to slow var ia t ions  of the 
quantity l/~?o (i.e., the t empera tu re  of the heating zone).  

Hence, modes of drawing which a re  acceptable f rom the point of view of sensit ivity to slow var ia t ions  of 
the p a r a m e t e r s  are  those which cor respond  to Q < 3, while the p a r a m e t e r  P is chosen so as to ensure  that 
the p r o c e s s  is ex t remal  with respect  to l /~o.  

Consequently, Eqs. (33) and the data in Fig. 3 give the dependence of the dimensions of the microcap i l -  
l a ry  on the dimensions of the blank and the p a r a m e t e r s  of the p rocess .  They can be used to choose the condi- 
t ions under which the p r o c e s s  is leas t  sensit ive to slow variat ions of the pa rame te r s .  The effect of pe r tu rba -  
tions that are  fast compared  with the cha rac te r i s t i c  t ime t o must  be considered separately.  

The authors  thank B. Z. Katsenelenbaum and A. D. Shatrov for useful discussions,  A. I. Leonov for  a 
number  of observat ions ,  and I. V. Aleksandrov,  T. V. Bukhtiarov, and A. A. Dyachenko for discussing the r e -  
sults at var ious  stages. 
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