PHYSICS OF THE FORMATION OF FIBER
LIGHTGUIDES

M. E. Zhabotinskii and A. V. Foigel! UDC 532,521

A fiber lightguide is a fine continuous or tubular transparent filament. Fiber lightguides are
formed from the liquid mass exuded through a dye or drawn from a suitable blank. Both of
these processes can be considered using the equations of the hydrodynamics of an incom-
pressible Newtonian liquid. (Polymers, which are not Newtonian liquids, are not considered
here.) The drawing of a continuous glass fiber from a dye is considered in [1]. The drawing
of a microcapillary from a dye is considered in [2], where a qualitative consideration is given
which is insufficient for an understanding of the effect of different parameters of the process
on the dimensions of the drawn microcapillary. In this paper we consider the formation of a
microcapillary from a tubular blank using the approximation of an incompressible Newtonian
liquid with a variable viscosity determined by the given temperature distribution. The effect
of surface tension and of the excess pressure produced in the channel to counteract the sur-
face tension are taken into account. It is assumed that the drawing process is steady, the
blank has thin walls and is axisymmetrical, and the transition to a microcapillary occurs
smoothly. With these assumptions the problem of obtaining the shape of the transition and the
dimensions of the microcapillary obtained is reduced to a system of ordinary differential
equations. The dependence of the dimensions of the microcapillary on the dimensions of the
blank and the parameters of the process is established, thereby enabling the process to be
optimized.

The process by which a microcapillary is formed is described by the Navier —Stokes equations and by
the equation of continuity. The viscosity of the blank and the finished microcapillary is assumed to be infi-
nitely large, it is a known function of the temperature, the temperature distribution is given, the liquid is
isotropic, and its motion is assumed to be axisymmetric, which makes the problem two-dimensional.

We are given the thickness of the wall h; and the mean radius Ty of the blank, its feed rate uy, and the
microcapillary drawing speed u_ (Fig. 1). Inthe solution we take into account the surface tension o and the
pressure drop Ap = p; — P, between the channel and the external medium, both these quantities being as-
sumed constant along the z axis.

The blank and the finished microcapillary are assumed to be relatively thin-walled, i.e., over the whole
cross section the thickness of the wall is assumed to be small compared with the radius. Assuming that heat
transfer to the blank inside the heater and subsequent cooling of the fiber are due to radiation, and the ab-
sorption coefficient of the material is small, the temperature of the liquid will be constant at all points of the
transverse cross section of the jet. This means that the temperature distribution and, consequently, the vis-
cosity depend only on the longitudinal coordinate and are described by the given function n(z). It is clear
from the formulation of the problem that n(z) is a smooth function which approaches infinity as z — == (see
Fig. 1).

We wish to find the shape of the jet (the transition from the blank to the microcapillary), i.e., the thick-
ness of the wall and the radius of the jet as a function of the longitudinal coordinate, including the thickness of
the wall h,, and the mean radius T, of the drawn microcapillary.

As was done in [1], we change from the Navier—Stokes equations
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Fig. 1

aHik/axk = 0, ?‘,, k = 1, 2, 3,
Hip = pvin — ow, Oin = ~ pdu + n(0v/dz, + 0v,/0m), (1)

where Mjj; is the tensor of the momentum flux density, oik is the stress tensor, vi and x; are the compo-
nents of the velocity and the coordinate, p is the pressure, p is the density, and 7 is the viscosity, to the
momentum equation which is obtained by integrating Eq. (1) over the volume of the liquid contained between
the sections z = z; and z = z,. We will change from a volume integral to a surface integral:

§ Mydf, = 0, (2)

where dfy is an element of the surface and the integration is carried out over the closed surface consisting
of the two transverse cross sections at z = z; and z = z, and the two side surfaces: the internal surface
[r = r;(z)] and the external surface [r = ry(z)]. The boundary conditions on the side surfaces have the form

O Sin 0y 5 + 6r,c08 8y, = — Ipy, o F {0 cosBy, o/ry.0)] sin Oy, 4 {3)
0y €08 0y, 5 + 0, 5in 8y, , = — [py, s F (0 cosBy, o/ryy,) ] cos By, s, {4)

where 01,5 are the angles of inclination of the internal and external boundaries in the r—z plane

1812 =—dri,2 (2)/dz; dri2(2)/dz = v,V rmr yeo). (5)

Substituting the tensor ljk into the z-th component of Eq. (2), neglecting the nonlinear terms proportional to
the density in view of the smallness of the Reynolds number, substituting Eq. (3) into the integral over the in-
ternal and external side surfaces, and assuming the angles of inclination 6y , to be small so that ¢;, ~1, we
obtain

72(21) r2(zy) A . (5)
rdr — :_[ (‘, ,__G_)ﬂg_z____ ( _U)@r(z)].
n‘(g;,) O rdr “(j;‘) Ozc7dr ;Sx ry(2) | ps o) T ri(z}l py s ;,z dz. (6)
Since the surface tension ¢ and the pressure of the air p; and p, are assumed constant, the integral on the
right side of Eq. (6) can be taken in parts:
r2(2)

S [ p—2n(z) %] rdr = % [pzrg(z) — piri(z)] +o trl(z) +r(z)l e (7

71(2)

We will assume that for all z
(ry — r)apldr & p, (ry — ry) @v./0roz & 0v,/3z (8)

[after obtaining the solution we will find by direct substitution into the Navier—=Stokes equations under what
conditions relations (8) are satisfied]. The pressure p and the longitudinal component of the velocity v, can
then be assumed constant over each cross section z = const and o be dependent only on the longitudinal co-
ordinate z. Taking the expression in square brackets in Eq. (7) outside the integral we obtain

[r3(2) — ri@)] 1 — 20 (3) (dv2/d2)) = [prd (2) — puri(2)] + 20 [r1(5) + 7o (3)] +- 2¢.
Integrating with respect to the variable r the equation of continuity
dive=0

and taking into account the above assumptions, we obtain
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vy = —(1/2)dv,/dz + A(z)/r, (9

where A(z) is an unknown function. We use the boundary conditions “(4) to find p(z) and A(z), we substitute
the expression for the radial velocity (9) into the equations of the boundaries (5), and we integrate them.
Then, changing from the inner and outer radii ry(z) and r,(z) to the wall thickness h(z) and the mean
radius T(z)

-h(z) = ryz) — rf2); 7(z) =(1/2)Ir,(z) + r.(z)]

and putting u = v,, Ap = p; — P, We obtain a set of equations with the boundary conditions

ndu/dz — au = — ¢/3h; (10)

2udh/dz -+ hdu/dz = o/ — (rAp/2n)[1 — (K%/4r)1; (11)
rhu = B, (12)

Uy, = Uy 7[,=_m =ry; Woe o, = hy; Uperg = Uy, (13)

where ¢ and g are unknown constants, u, and u. are the feed rate and the drawing velocity, and hy and 1
are the thickness of the wall and the mean radius of the blank.

From a comparison of Eq. (12) with z = —« and Egs. (13) we obtain that 8 = Tyhyu,. The assumption
that the walls of the fiber are thin enables us to neglect the quantity ( h/T)? in Eq. (11) compared with unity,
and after substituting the value of h from Eq. (12) into Egs. (10) and (11) we obtain two differential equations
for T and u and an explicit expression for h.

Changing to the dimensionless variables
Z =z/l, H=hlhy, R =rTy, U= uluy, p = 1o/, (14)

where 7, is the minimum viscosity, and the effective length of the heating zone I is given by the equation
U= | dain(s); (15)

the equations and the boundary conditions will now contain the dimensionless parameters

U,=u,lu, w=IU_, y=allnyw,

c (16)
P = rApli2nguchow, Q = olingughgw.
In the new variables the equations and boundary conditions will have the form
dU/dz — yawlU = — (Q/3)uwRU; amn
2UdR/dz -+ RAU!dz = —uwR3U(Q — PR); (18)
U’lz=—m: .1; Rlz:—m: '1’ (19)
Uly_yow = U_; H = 1/RU. (20)

The constant y is found from the condition for the boundary conditions (19) and (20) to be satisfied, the
number of which exceeds by one the order of the system (17) and (18).

When P = Q = 0, which corresponds to zero surface tension and zero pressure drop (Ap =o = 0), Eqs.
(17) and (18) when y =1 have a solution which satisfies all the boundary conditions

UoN(Z) = exp (ws(Z)); RNZ) = [UN(Z)]1-/% (21)
HO(Z) = [UO(Z)172, (22)

where
sy= | p(ae (23)

-—2

To solve Eqs. (17) and (18) when P2 + Q2 = 0 we change from the variable Z to the variable s(Z). In
this case, the interval (—«, ) of variation of Z corresponds to the interval (0.1) of variation of s, since as
o

follows from Egs. (14) and (15), s(+«)= [ u(£)de=1. Substitution of Eq. (23) into Egs. (17) and (18) and arithmetic
- 00

transformation lead to a system of equations with separable variables:

dR/ds = —(wR/2)[y 4- (2/3)QR — PR*]; (24)
(1/U)dUIdR = (2/3YQR — 2y)/[yR + (2/3)(QR® — PR®)] (25)
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with the boundary conditions
Uls=o = 1; Bisco = 1 (26)
Uls—y = exp{w). 27

Integrating Egs. (24) and (25) with the boundary condition (26) we obtain for R and U as implicit fune-
tions of the independent variable s expressions containing the unknown constant vy:

[92/(y1 — yo)In[(1 — Ry,)/R( — p)] + [wa/(ys — 1) In[{1 — Ryp)/ Rt — y,)] = yws/2; (28)

InU = [(3y; + y)/(y — ) Malld — Ry)/(RAL — 3] + (B — y)/ys — 3)Inl1 — Ry RO — g)], (29

where y; , are quantities which are inverse to the voots of the quadratic trinomial on the right side of Eq. {24}
V1o 2 = (—Q£) Q% 1~ 9Py)/3y. (30)

To obtain the unknown constant y we use the boundary condition (27). Substituting Eq. (27) into Egs. (28) and
(29) and eliminating from the equations obtained the unknown quantity R(1), we obtain that y = y (P, Q, w) is
the root of the equation

(1— yyexplwly — 1)y + w2y, - y)1 — (1 — 1) X
X exp [uy — )8y, + y)/20ys + 1)1 = (g, — yo) exp (— w/2) (31)
[according to EqQ. (30) v occurs in yy,].

After obtaining the constant y from Eq. (31), the quantities R and U are given as implicit functions of
s by Egs. (28) and (29).

The dimensional radius, longitudinal velocity, and wall thickness can be expressed, according to Egs.
(14) and (19), in terms of the functions R(s) and U(s):
Tz) = roRIs(2/1)]; ulz) = u,Uls(z/D)]; (32)
Wz) = h/{RIs(z/1)1U [s(z/1) 1},
The final values of the wall thickness h, = h(*«) and the radius T, = r(*«) which describe the ge-
ometry of the drawn microcapillary can be expressed, using Eq. (27), in terms of the function R(s) for s = I:
ho = kel (wofu )K(P, Q, w); T, = T} (wfu )IUK(P, Q, w)], (33)
where we have introduced the notation
K(P, Q, w) = exp (— wi2)/R(1). (34)

Substituting the boundary condition (27) into Eqgs. (28) and (29), and using Eg. (31}, we obtain
KPP, Q, w)= (1 — yyexpluly — 1)Byy — 1:)/2Ay1 + v2)] -+ paexp (— wi2). (35)

Hence, the problem of determining the geometry of the microcapillary (the final values of the wall thick-
ness h, and the radius T,) reduces to the humerical solution for each set of values of the parameters P, Q,
and w of the transcendental equations (31) and (35), after which the guantities h, and ¥, are found from Eg.
(33).

The functions R(s) and U{(s) which, from Eq. (32) determine the profile of the jet, i.e., the quantities
h(z) and T(z), can be found either by numerical solution of Eq. (28), or which is more convenient, by direct
numerical integration of the system of equations (24) and (25) with the boundary conditions (26) and the known
constant y [obtained from Eq. (31)].

For P «1,Q « 1 for the function K(P, Q, w) the following approximate expression [obtained by the
method of successive approximations from Egs. (24) and (25) taking Egs. (26}, (27), and (34) into account]
holds:

K(P, Q, w) =1 + Q — (P/2) + @°1(1/8) — (2/3w)] + PQU1/18) + (1/3w)] — (P*/8) + O(Q* + P?) {36)
[we used expressions (21) and (22) as the zeroth approximation for R(s) and U(s)].

We will determine under what conditions assumptions (8) hold in order that we may assume the pressure
and the longitudinal velocity are constant over the transverse cross section. We will confine ourselves to the
case of small values of P and Q so that we can use the zeroth approximation (21) as the solution for the
longitudinal velocity. Substituting Eq. (21) and the expressions obtained for p using Egs. (4) and (9) into the
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Navier—Stokes equation (1) and assuming that §/8z ~ 1/1, since the unique characteristic length along the z
axis is [, we find that assumptions (8) hold if Tyhy/I? < 1.

In view of the fact that the fiber has thin walls this limitation is less strict than the previously made
assumption that the slope of the boundary is small.

It is important that the final values of the wall thickness h_ and the radius T, should be independent of
the viscosity —temperature dependence and of the details of the temperature profile itself, and should depend
only on the integral characteristic 1/ny of the function n(z), since according to Eq. (33) the quantities h,
and 1., depend on the viscosity only through the parameters P and Q which, of all the characteristics of the
function n(z), contain only the quantity 1/n, [defined by Eq. (15)], which is the characteristic of the heating
zone (an increase in the effective length of the heating zone I or an increase in the temperature leading to a
reduction in the minimum viscosity 7, corresponds to an increase in the characteristic 1/n, of the heating
zone).

Hence, for different temperature distributions, drawing of the microcapillary occurs for different jet
profiles along the whole length of the blank until the microcapillary solidifies, but, if the integral character-
istic of the viscosity distribution 7n(z) is the same, the dimensions of the drawn microcapillary, i.e., the
values of h., and T, , will also be the same.

We will illustrate the dependence of the jet profile on the parameters P and Q for a fixed temperature
distribution

T(z) = Ty + (T, — THL + ¢,7%),

where Ty, is the maximum temperature, Tg is the vitrification temperature, and ¢, is a constant chosen to
ensure the same value of I/7n, in both cases with the following viscosity —temperature dependence:

WT) =aexplo/(I —THl, T >T,
(e and b are constants which depend on the properties of the material).

The deformation of the jet profile with respect to the profile unperturbed by surface forces depends
very much on the values of the parameters P and Q and the ratio between them [ Fig. 2, where curve 1 is for
the unperturbed profile with P = Q = 0; curve 2 is for the perturbed profile with P =0,Q =1 and P =0,

Q =2 (Fig. 2a and b, respectively)]. The quantity Q is greater the greater the surface tension ¢ andthe time
the specimen resides in the heating zone 1/uy, and the lower the value of the minimum viscosity n, and the
initial wall thickness hj, which determines the thickness of the layer of the viscous liquid which resists the
action of the surface tension forces.

The dimensions of the microcapillary, i.e., the quantities h,, and r.,, are determined according to Eg.
(33) by the dimensions of the blank hy and T,, the ratio of the drawing speed u, to the feed rate uj, and by
the value of the function K (P, Q, w). When there are no surface forces (Ap = ¢ = 0 and, consequently, p =
Q = 0) it follows from Edq. (36) that K = 1 and the final values of the wall thickness and the radius are propor-
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tional to the initial values of these quantities with a coefficient v u;/u., which arises from the law of con-
servation of mass and which describes the reduction in the wall thickness and the radius while preserving the
geometrical similarity of the cross sections of the microcapillary and the blank. The function K(P, Q, w)
describes the effect of the surface tension and pressure drop, which lead to a deviation from similarity de-
pending on the ratio between them, or K > 1 in which case h,/Ts > hy/Ty, or K< 1 in which case ho/T, <
h 0 /.r_o.

Figure 3 shows a family of curves which give K as a function of @ for w = In(10°) and different fixed
values of the ratio P/Q. The curves corresponding to w = In(10*) and w = In(10%) practically coincide with
the curves for w = In(10%), so that over this range of values of w we can neglect the explicit dependence of
the function K on w (as previously, K depends implicitly on w, since w occurs in P and Q). The weak
explicit dependence of K on w also follows from Eq. (36), since w only occurs in the terms which are
quadratic in P and Q.

The family of curves in Fig. 3 together with Eq. (33) answers the question of how h. and T, depend on
the dimensionless parameters P and Q.

To explain the dependence of the dimensions of the microcapillary on each of the dimensional parame-
ters grouped in the two dimensionless quantities P and Q, it is necessary to analyze the results further.
Figure 3 shows the dependence of he and T on the characteristic 1/7, of the heating zone (in fact on its
temperature) for fixed values of the pressure drop Ap, since, as is seen from Eq. (16}, each of the quantities
I/My and Ap occurs only in one of the parameters Q and P/Q , respectively. The additional scales in Fig. 3
in which the maximum temperature of the heating zone T (°C) and the dimensions of the microcapillary he
and T, (u) are plotted, are constructed for the following values of the remaining parameters: h, = 0.1 cm,
To=1 cm, uy =0.01 ecm/sec, Ue = 10 m/sec, ¢ = 250 dyn/cm, and Il =5 cm.

To obtain the direct dependence of the dimensions of the microcapillary on the other dimensional
parameters of the process it is necessary when constructing the graphs to use as the argument and the
parameter of the family not Q and P/Q, but other quantities (for example, the quantities P and Q, respec-
tively, when investigating the dependence on Ap for fixed values of o). Such graphs can be obtained from
Fig. 3.

Within the framework of this problem we can only consider variations of the parameters that are slow
compared with the characteristic time t; of the system. The upper estimate for ty is the ratio of the effec-
tive length of the heating zone 1 to the minimum longitudinal speed — the feed rate s ty = 1/ Uy (under prac-
tical conditions t ~ 102-10° sec). The problem of the sensitivity of the dimensions of the microcapillary to
such slow variations of the parameters is considered using the above graph. It is seen from Fig. 3 that values
of the parameters P and Q exist when (8K/0Q)p /Q = 0. When the partial derivative is equal to zero this
means that at this point the dimensions of the microcapillary are only slightly sensitive to a slow change in
the characteristic I/7, of the heating zone for constant Ap. Note that, first, the extremal points correspond
to K> 1, i.e., to greater or less collapse of the microcapillary, and, secondly, for large Q the curves in
Fig. 3 are well separated from one another which corresponds to an extremely high sensitivity to changes in
Ap. This obviously neutralizes any merit of these points such as the low sensitivity to slow variations of the
quantity I/7g (i.e., the temperature of the heating zone).

Hence, modes of drawing which are acceptable from the point of view of sensitivity to slow variations of
the parameters are those which correspond to Q < 3, while the parameter P is chosen so as to ensure that
the process is extremal with respect to 1/7;,

Consequently, Egs. (33) and the data in Fig. 3 give the dependence of the dimensions of the microcapil-
lary on the dimensions of the blank and the parameters of the process. They can be used to choose the condi-
tions under which the process is least sensitive to slow variations of the parameters. The effect of perturba-
tions that are fast compared with the characteristic time ty must be considered separately.

The authors thank B. Z. Katsenelenbaum and A. D. Shatrov for useful discussions, A. I. Leonov for a
number of observations, and I. V. Aleksandrov, T. V. Bukhtiarov, and A. A. Dyachenko for discussing the re-
sults at various stages.
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